アクアドリルスタブの
特性と切削性能
Drilling Performance of Aqua Drill Stub

キーワード
アクアコーティング、エコ＆ECO、経済性、地球環境、高速ウェット加工、ドライ加工

1. はじめに

機械加工では高速・高能率加工の要求がますます強くなっている。これは、高能率化による経済効果、すなわち、全加工エネルギーの低減、時間短縮によるコストダウンの追求によるものである。

また、世界的に環境に対する意識が高まってきており、作業環境だけでなく、産業廃棄物の低減、地球資源の有効活用など地球環境の保護が急務となっている。その対策として、機械加工では切削油剤を使用しない「ドライ加工」が注目され、日米欧で実用化へ向けて研究が進められている。ドライ加工により切削油剤に関連したコストが不要になることや付帯的な利点としては廃棄のコスト、後工程の

洗浄が必要になるなど多くの経済効果もある。

当社では、経済性と環境対策の両立を追求することを切削技術のテーマとし「エコ＆ECO」（＝エコノミー＆エコロジー）に取り組んでいる。「エコ＆ECO」の概念を図1に示す。

今回、「エコ＆ECO」を可能にしたコーティングを超硬ソリッドドリル「アクアドリルスタブ」を商品化したので紹介する。

2. アクアドリルスタブの特長

図2にアクアドリルの外観を示す。アクアドリルスタブとは

Aqua＝水（切削油剤）の機能を最大限に活用した高速ウェット加工

Aqua＝水（切削油剤）を必要としないドライ加工を可能にしたドリルを意味し、表面に施されたコーティングが青色（アクアブルー）であるということでテーニングしたものである。

アクアドリルスタブは、次のような特長を有する。
①耐熱性、耐摩耗性、耐熱亀裂性に優れた超微粒子超硬合金と耐熱性に優れ、被削材との潤滑性に富んだアクアコーティング（PAT.P）の採用により、ドライ加工及び高速ウェット加工で抜群の性能を発揮する。
②従来の超硬コーティングドリルによるウェット加工に比べ、高速ウェット加工では2～3倍の高能率加工が、また、ドライ加工でも従来ウェット加工と同等以上の能率で加工できる。
③潤滑性に富んだアクアコーティングと切りくず排出性に優れた溝形状により切りくずが詰まりにく

・NACHIの提唱する「切削技術テーマ」

◆ “エコ”＝エコノミー　コストダウンに寄与。
◆ “ECO”＝エコロジー　環境にやさしい。

経済性と環境対策の両立の追求

図1　エコ＆ECOの概念
3. アクアドリルスタブの形状

図3にアクアドリルスタブと一般的な超硬ソリッドドリルの切れ刃形状を示す。一般的な超硬ソリッドドリルの切れ刃がほぼ直線であるのに対し、アクアドリルスタブは外周コーナ部がネガ形状になっている。一般に切れ刃が直線の場合、外周コーナ、リーディングエッジは銳利な形状になり、特に外周コーナで切削速度が最も速く、受ける抵抗も大きくなることから、熱の発生が大きく切れ刃の摩耗及び欠けが進むやすい。また、ウェット加工では切削油剤の潤滑効果により切りくずの排出はスムーズに行われるが、ドライ加工では潤滑性がないことから切りくず排出時に抵抗が大きくなり、さらにはドリルのリーディングエッジに欠けを生じるといった問題があった。

アクアドリルスタブは切れ刃が外周コーナ部でネガ形状になっているため外周コーナ部及びリーディングエッジの強度が高くなることから摩耗及び欠けが抑制され過酷なドライ加工や高速ウェット加工でも性能を発揮することができる。

4. アクアドリルスタブのコーティング

高速ウェット加工やドライ加工では、前述のように熱の発生が大きいことから、使用されるコーティングには耐熱性、耐摩耗性、韌性が要求される。また、ドライ加工では切削油剤による潤滑効果がないため、熱の発生を抑制し、切りくず排出をスムーズにする必要がある。これらの加工特性を満足するために、アクアドリルスタブには、新たに開発した表面潤滑機能を持った複合多層コーティングを被覆した。

このコーティングはドリルの名称と同様にアクアコーティングと名付けた。

5. アクアドリルスタブによる

高速ウェット加工（エコ：経済性の実証）

図4に合金鋼 SCM440 の高速ウェット加工による他社品との寿命比較を示す。合金鋼 SCM440、硬さ 310HB の被削材に、ドリル径 6mm、深さ 15mm の通り穴を切削速度 100m/min、送り量 0.25mm/rev、
送り速度で1,326mm/minの高速・高能率条件で加工した。アクアドリルスタブは平均5.877穴の加工が可能で、他社品の2倍以上の長寿命であった。

- 次にウェット加工では他社超硬コーティングドリルとの等寿命線図の比較を行った。等寿命線図には数穴種の切削速度と送り量の組み合わせで寿命テストを行い、その結果を解析し経軸に切削速度、横軸に送り量をとり、一定の寿命になる切削条件の範囲を図示の等寿命線によって示したものである。穴あけ数が最も多くなる最大寿命での切削条件は、等高線の頂点での条件になる。また高能率加工条件の曲線は、各々の寿命で最も加工能率を高くすることができる切削条件を示している。

図5 その結果を示す。加工条件はSCM440、硬さ310HBの被削材をドリル径6mm、穴深さ15mmの止まり穴加工である。最大寿命で比較すると、他社超硬コーティングドリルでは8,077穴であるのに対し、アクアドリルスタブでは8,844穴であり同等以上の寿命が得られる。もっとも大きな違いは、最大寿命での加工能率である。他社超硬コーティングドリルでは416mm/minなのに対し、アクアドリルスタブは836mm/minであり2倍の加工能率が得られる。

図4 合金鋼SCM440の高速ウェット加工による事例

6. アクアドリルスタブによるドライ加工
(環境への優しさの実証)

現在、機械加工の主流は、切削油剤を使用したウェット加工である。ドリル加工における切削油剤の効果は、冷却、潤滑、切くず排出の3点である。

しかし、ドライ加工ではこれらの効果が期待できないため、切削熱による刃先の軟化、熱亀裂、振動熱、摩耗、切りくずの劣化などの諸問題が発生する。ドライ化が進んでいるエンドミル加工やホブ加
工は断続切削のため、加工中に切れ刃が被削材と接触しない時間があり、そこで冷却を行っている。また、切削により発生する熱は、切りくずに移行しやすくオープンスペースに排出される。しかし、ドライ加工では常に切れ刃が被削材と接触し、しかも切りくずは加工しで穴とドリルの角の限られた空間を擦りながら排出されるため切削熱の蓄積が大きくなくなってしまう。アクアドリルスタブはこれらの問題を前後のような特徴により克服することができた。

図6に合金鋼 SCM440の加工事例を示す。アクアドリルでのドライ加工と超硬コーティングドリルでのウエット加工を行った場合の寿命を比較した例である。合金鋼 SCM440、硬さ310HBの被削材に、ドリル径3mm、穴深さ9mmの止まり穴を切削速度30m/min、送り量0.09mm/revの切削条件で加工した。超硬コーティングドリルによるウエット加工での寿命は平均5,636穴であったが、アクアドリルによるドライ加工では平均12,508穴であった。

図7は構造用鋼SS400の加工事例である。アクアドリルスタブでのドライ加工と超硬コーティングドリルでのウエット加工を行ったときの寿命穴数を比較した。ドリル径6mm、穴深さ18mmの加工穴を、切削速度50m/min、送り量0.2mm/revの切削条件で加工した。超硬コーティングドリルによるウエット加工での寿命は平均8,484穴、アクアドリルスタブによるドライ加工では平均7,004穴であり80%以上の性能であった。構造用鋼SS400は切りくずが伸びやすく超硬ドリルでは切りくず処理が問題になることがある。図8に1,000穴目の切りくずの比較を示す。アクアドリルスタブは断続性がよく均一な切りくず形状を示しており、ドライ加工でも排出性がよく安定した加工が可能である。

図9に炭素鋼SS40Cの高速加工の事例を示す。
図9 炭素鋼S50Cの高速加工事例

図10 穴位置精度

図11 アクアドリルステップの基準切削条件
クアドリルスタブとドライ加工も可能としている他社高速加工用超硬ドリルの寿命比較を行った。ドリル径6mm、穴深さ15mmの止まり穴を切削速度150m/min、送り量0.15mm/rev、加工能率では1,200m/minの切削条件で比較した。他社高速加工用超硬ドリルは平均1,090穴で折損したのに対し、アクアドリルスタブは平均4,510穴であり、寿命差は4倍以上であった。高速加工においても他社品に比較し、圧倒的な性能差を示している。

図10に穴位置精度を示す。炭素鋼S50Cをドリル径6mm、穴深さ15mmの止まり穴を切削速度100m/min、送り量0.15mm/rev、加工能率では800m/minの切削条件で加工し、狙いの位置に対する穴中心の位置ずれ量を測定した。穴位置精度は0.015mm以内に入っており優れた穴位置精度を示している。

7. アクアドリルの使用上の注意点

アクアドリルスタブの基準切削条件を図11に示す。ウェット加工とドライ加工では切削条件が異なることに注意いただきたい。ドライ加工では従来の超硬ソリッドドリルと同等の切削条件で使用することができ、ウェット加工では、従来の超硬ソリッドドリルの2～3倍の高能率加工が可能である。

特にドライ加工では次の点に注意いただきたい。
①冷却及び切りくず除去のためエアーブロワを行う。
②高温の切りくずやドリルの折損時の火花により火傷や火災の危険があるので、加工機械は遠いし可燃物を排除する。特に油性切削油剤使用後の残置油は引火に注意する必要がある。

8. おわりに

今回紹介したアクアドリルスタブは、ウェット加工及びドライ加工のどちらにおいても非常に高性能なドリルである。しかし、限界加工穴深さの延長や尽きることのない高速・高能率化への要求など残されている課題もあり、アクアドリルスタブの改良、シリーズの展開を行いこれらの要求に応えていきたい。