油圧バルブ用ソレノイドの吸引力の改善
Improvement of the pulling force of solenoid

キーワード
品質工学、二段階設計、ソレノイド、吸引力、標示因子、再現性、誤差因子

■ 適用

ソレノイドは電源の ON/OFF によって簡単に制御できるアクチュエータとして、各種の産業機器に広く用いられている。
当社においても油圧バウブ用として各種のソレノイドを使用しており、用途に応じて設計、製作している。
設計に際してはサイズ、消費電力などの制約条件の中で最適な設計をいかに速く実現するかが重要である。
本報では、品質工学を適用し、ソレノイドの性能向上と開発期間短縮を行った事例について述べる。

■ Abstract

Solenoids are used in many fields of industrial systems.
In NACHI-FUJIKOSHI, many types of solenoids are designed and manufactured for hydraulic valves.
It is important to design solenoid fast and make performance good.
This paper discrives the improvement of the pulling force of solenoid and the reduction of development term based on Quality Engineering for development of solenoid.

1. ソレノイドの吸引力

ソレノイドの吸引力はソレノイドバルブの性能を決定づける重要な特性である。高い吸引力を広いストローク範囲で発揮することで、より高性能のソレノイドバルブの設計が可能となる。また、ソレノイドの高吸引力による性能の余裕はバルブの信頼性向上につながることから、ソレノイドの高吸引力化は、ソレノイドバルブの品質向上に対して不可欠である。

今回開発したソレノイドバルブは、マニホールドブロックにねじ込んで使用するカートリッジ形の 3ポート弁であり、フォークリフトやクレーン車といった各種車両のトランスミッション制御、建設機械のバイロット圧力制御等への応用を主な用途として開発した。（図 1）

また、従来品に対して小形化、省エネルギー化を目指している。具体的な指標としては次の 2 項目である。

(1) 小形化
（外径 46mm → 35mm、24％減少）
(2) 省エネルギー化
（消費電力 24W → 19W、21％減少）

しかし、小形化と省エネルギー化は、いずれも吸引力の低下に直結する。
そのため、品質工学を適用して設計定数を最適化することにより、吸引力の向上を図ることにした。

図 1 カートリッジソレノイドバルブ
2. 従来の評価方法

従来の評価特性としては以下に示すように多く特性があり、しかもお互いに関連しあっているので、ある特性の変更は他の特性に大きく影響する。そのため開発期間の多くを客評価特性のトレードオフに費やし、開発期間の短縮を困難にしていった。

(1) 吸引力

吸引力は図 2 に示すようにグラフの横軸をストローク、縦軸を吸引力にとり、電流をパラメータとして、ストローク―吸引力特性として評価している。吸引力は高いほど良い。

(2) 使用可能なストローク

設計上必要とする吸引力がどのストロークまで得られるかを示す。使用可能なストロークの範囲が広いほどバルブのスプールストロークを長くすることができ、バルブ圧力損失の低減が可能になる。

吸着面形状を段付形状とすることで使用可能なストローク範囲を大きくすることが可能であるが、一般的には吸引力とトレードオフの関係がある。

(3) コイル消費電力

コイルは通電により発熱する。また通電時間が長いほどコイル抵抗は増加する。コイルは直流電圧で駆動されるので、結果としてコイル電流が減少し、吸引力が低下する。

発熱を減らすためには消費電力は低い方が望ましい。また、車載関係では電気系の負荷軽減のためにも低消費電力化は有効である。

しかし、低消費電力化により必然的に吸引力は低下する。

3. 基本機能

ソレノイドで電気エネルギーを機械エネルギー変換器と考え、入力として電気エネルギー、出力として機械エネルギーを考える。

まず、図 3 に示す単純な形状を持つ平面プランジャ形のソレノイドのストローク―吸引力特性は式 1 で示される。

\[F = k \times A \times I^2 / S t^2 \] (式 1)

- F：吸引力
- k：比例定数
- A：吸着面積
- I：電流
- S t：プランジャのストローク

図 4 に示す段付プランジャ形のソレノイドにおいては、式 1 の定数 k はストロークの間数となり式 2 となる。ここでストロークを固定して考えれば、式 3 に示されるように吸引力は電流の二乗に比例することになる。

\[F = k(S t) \times A \times I^2 / S t^2 \] (式 2)

図 2 従来の評価特性（ストローク―吸引力特性）

図 3 平面プランジャ形ソレノイド

図 4 段付プランジャ形ソレノイド
F=k×x^2
\text{(式 3)}

品質工学の解析ではデータを二乗して計算を実施する。解析での二乗の成分がエネルギーのディメンショングとなるよう、式3の両辺の平方根をとった式4を基本機能とした。（図5）

F_{出}=k×x
\text{(式 4)}

解析は、電流（信号因子）の値が0の時、吸引力は0となるので、ゼロ点比例式を用いることとする。
信号因子の水準は定格電流比で33％、66％、100％、133％の4水準とした。

4. ストローケの取扱い

式4ではストロークを固定した場合を考えたが、実際はストロークを何らかの形で含めた形で吸引力を評価したい。そのため、ストロークを誤差因子とするか標示因子とするかを検討し決める必要がある。

誤差因子として考えられるならば、式4の比例定数k'がストロークに関係なく一定であることが理想である。

例えば図6のようにストロークS_{1}でのk'をβ_{1}、ストロークS_{2}でのk'をβ_{2}とすれば、β_{1}=β_{2}とした場合である。

この場合のストローク-吸引力特性はいわゆる水平吸引力特性となる。（第8節の注参照）

しかし、この場合は式1からわかるように、ストローク時急増する吸引力を何らかの手段で低くする必要がある。

そのため入力エネルギーや有効に活用できないので、全体的な吸引力が低くなりやすい。

一方、ストロークを標示因子として考えれば、図7のようにβ_{1}とβ_{2}の差が起こっても当り前であるという立場である。（計算上はβ_{1}とβ_{2}の差を誤差に含めない）

この場合は小ストローク時に無理に吸引力を減少させる必要がないため、高い吸引力を得る事が可能となる。

開発目標は吸引力の向上にあるので、今回はストロークを標示因子として取り扱うこととした。

標示因子であるストロークの水準は、実際の使用範囲の1mmから2.75mmの間で0.25mmおきに取り8水準とした。

5. 誤差因子

コイル、コイルケースはバルブ本体に対し360度回転可能な構造としている。コイルケースには図8に示すようにコイルのリード線取り出すための切れ

\begin{center}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{image6.png}
\caption{図6 ストロークを誤差因子とした場合}
\end{figure}
\end{center}

\begin{center}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{image7.png}
\caption{図7 ストロークを標示因子とした場合}
\end{figure}
\end{center}
り欠きを設けている。実際に使用する際の切り欠きの方向は、コイルの取付方向によるため特定できない。

また、バルブ本体にはマニホールドブロックにねじ込む際に使用するスパンナ掛け用の二面幅を設けている。この二面幅の方向も特定することが出来ない。

この部分はソレノイドの磁路として使用しており、コイルケースと二面幅の重なり方により、磁路面積が変化し、吸引力に影響する可能性がある。

そこで、コイル組み付け方向を誤差因子として取り上げた。
水準は磁路面積の大（N1）、小（N2）の2水準とした。

6. 制御因子と水準

制御因子は表1に示すソレノイドの形状に関する設計定数を8個取り上げ、L18直交表に割り付けた。

<table>
<thead>
<tr>
<th>制御因子</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>磁路面積大</td>
<td>大</td>
<td>小</td>
</tr>
<tr>
<td>B</td>
<td>磁路面積小</td>
<td>中</td>
<td>近</td>
</tr>
<tr>
<td>C</td>
<td>接触部の性</td>
<td>小</td>
<td>中</td>
</tr>
<tr>
<td>D</td>
<td>接触部の性</td>
<td>小</td>
<td>中</td>
</tr>
<tr>
<td>E</td>
<td>希田長さ</td>
<td>短</td>
<td>中</td>
</tr>
<tr>
<td>F</td>
<td>陽心長さ</td>
<td>短</td>
<td>中</td>
</tr>
<tr>
<td>G</td>
<td>条方向隙間</td>
<td>小</td>
<td>中</td>
</tr>
<tr>
<td>H</td>
<td>陰方向隙間</td>
<td>小</td>
<td>中</td>
</tr>
</tbody>
</table>

7. 実験方法

図9(a)に示すように、4水準の電流（信号因子）をパラメータとしてストローク－吸引力特性を測定する。このデータに基づき、それぞれの電流、ストロークでの吸引力の平均の曲線をとり、図9(b)に示す電流－吸引力$^{1/2}$特性を得た。
8. 実験結果と解析

L18直交表の1行目の実験データを図10に、SN比と感度の計算結果を表2に、要因効果図を図11、12に示す。

SN比と感度の計算方法について簡単に説明する。表3はL18直交表の第1行目のデータの一部である。

表2 SN比と感度

<table>
<thead>
<tr>
<th>No</th>
<th>SN比</th>
<th>感度 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.42</td>
<td>12.46</td>
</tr>
<tr>
<td>2</td>
<td>28.79</td>
<td>11.64</td>
</tr>
<tr>
<td>3</td>
<td>29.82</td>
<td>12.14</td>
</tr>
<tr>
<td>4</td>
<td>33.32</td>
<td>12.41</td>
</tr>
<tr>
<td>5</td>
<td>30.23</td>
<td>12.20</td>
</tr>
<tr>
<td>6</td>
<td>22.02</td>
<td>6.28</td>
</tr>
<tr>
<td>7</td>
<td>30.83</td>
<td>11.73</td>
</tr>
<tr>
<td>8</td>
<td>26.60</td>
<td>8.54</td>
</tr>
<tr>
<td>9</td>
<td>34.60</td>
<td>12.55</td>
</tr>
<tr>
<td>10</td>
<td>20.03</td>
<td>12.47</td>
</tr>
<tr>
<td>11</td>
<td>30.20</td>
<td>12.85</td>
</tr>
<tr>
<td>12</td>
<td>10.53</td>
<td>11.26</td>
</tr>
<tr>
<td>13</td>
<td>33.12</td>
<td>12.26</td>
</tr>
<tr>
<td>14</td>
<td>32.10</td>
<td>8.67</td>
</tr>
<tr>
<td>15</td>
<td>28.70</td>
<td>13.57</td>
</tr>
<tr>
<td>16</td>
<td>28.61</td>
<td>10.98</td>
</tr>
<tr>
<td>17</td>
<td>35.92</td>
<td>12.53</td>
</tr>
<tr>
<td>18</td>
<td>24.99</td>
<td>11.32</td>
</tr>
</tbody>
</table>

図10 1行目のデータ
標示因子、誤差因子ごとのプロット

図11 SN比の要因効果図

図12 感度の要因効果図
なお、1行分のデータは4（信号因子の水準数）×8（標示因子の水準数）×2（誤差因子の水準数）=64個となる。

全変動\[S_T = 2.32^2 \times 4.32^2 \times 6.18^2 \times \cdots \times 5.70^2 \]
\[= 1595.9300 \quad (f_T = 64) \]

線形 \[L_1 = 0.55 \times 2.32 + 1.10 \times 4.32 \]
\[+ 1.65 \times 6.18 + 2.20 \times 7.54 \]
\[= 32.8105 \]

\[L_2 = 0.55 \times 2.62 + 1.10 \times 4.43 \]
\[+ 1.65 \times 6.02 + 2.20 \times 7.34 \]
\[= 32.3978 \]

\[L_3 = 0.55 \times 1.40 + 1.10 \times 2.97 \]
\[+ 1.65 \times 4.54 + 2.20 \times 5.69 \]
\[= 24.0331 \]

比例項の変動
\[S_p = (L_1 + L_2 + \cdots + L_{10})^2 \]
\[/ 16 \]
\[= 1568.5280 \quad (f_p = 1) \]

\[r = 0.55^2 + 1.10^2 + 1.65^2 + 2.20^2 \]
\[= 9.075 \]

誤差因子間の変動
\[S_{N \beta} = (L_1 + L_2 + \cdots + L_4)^2 / 8 \]
\[+ (L_5 + L_{10} + \cdots + L_{16})^2 / 8 \]
\[- S_\beta \]
\[= 0.0180 \quad (f_{N \beta} = 2) \]

標示因子間の変動
\[S_{S \beta} = (L_1 + L_2)^2 / 2 \]
\[+ (L_3 + L_4)^2 / 2 \]
\[+ (L_5 + L_{10})^2 / 2 \]
\[- S_\beta \]
\[= 16.5320 \quad (f_{S \beta} = 8) \]

誤差変動
\[S_e = S_T - S_\beta - S_{N \beta} - S_{S \beta} \]
\[= 10.8520 \quad (f_e = 64-1-2-8 = 53) \]

ブールした誤差分散
\[V_N = (S_e + S_{N \beta}) / (f_e + f_{N \beta}) \]
\[= (10.8520 + 0.0180) / 53 \]
\[= 0.1976 \]

誤差分散
\[V_e = S_e / f_e \]
\[= 10.8520 / 53 \]
\[= 0.2048 \]

SN 比
\[\eta = 10 \times \log (S_T - V_e) / \eta V_e \]
\[= 10 \times \log ((1568.5280 - 0.2048) / 9.075) \]
\[= 29.42 \text{ (db)} \]

感度
\[S = 10 \times \log (S_T - V_e) / r \]
\[= 10 \times \log ((1568.5280 - 0.2048) / 9.075) \]
\[= 12.46 \text{ (db)} \]

* 注 ストロークを誤差因子として考えた場合、
\[V_N \] は次式となる。
\[V_N = (S_e + S_{N \beta} + S_{S \beta}) / (f_e + f_{N \beta} + f_{S \beta}) \]

\[V_N \] には標示因子間の変動が含まれることになり、SN 比は \[S_e + S_{N \beta} + S_{S \beta} \] が小さいほど高くならない。特に \[S_{N \beta} \] が小さいということは、ストロークによらず吸引力が一定であることを示している。この様な特性を水平吸引力特性と呼ぶ。

9. 最適条件

品質工学では最初に機能のばらつきを小さくしておき、次に出力を目標値になるよう調整する二段階設計法を推奨している。
機能のばらつきは SN 比によって評価し、SN 比が大きいほど機能のばらつきが小さい。出力は感度に
10. 確認実験

直交表を利用した実験においては、確認実験でのSN比の利得の再現性の有無が最も重要である。確認実験とは2種の実験条件AとBで実験し、SN比の利得（2種の実験条件AとBのSN比の差）が、推定値と実験値で差がないかどうかを確認することである。

確認実験で利得の再現性があるということは、開発段階での最適条件が、製造段階や市場においても成立することを示している。

今回の実験では、確認実験は試作条件（試作品の設計条件）と最適条件にて実施した。

SN比、感度の推定値は、すべての因子で行っている。その結果、表5に示すように利得の推定値と実験値で差があり、SN比の利得の再現性はあまり良くなかった。

感度の利得についても推定値に対して確認実験の利得は小さかった。

表4 最適条件

<table>
<thead>
<tr>
<th>制御因子</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>感度の推定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>16.50dB</td>
</tr>
<tr>
<td>試作条件</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>10.70dB</td>
</tr>
</tbody>
</table>

11. 実験の再現性について

再現性が得られない場合には、基本機能が良くないと、制御因子間の交互作用が大きい、誤差因子の傾向が制御因子の組合せによって変化している等の理由と考えられる。

図10に示すように電流と吸引力の平方根には直線性があると判断され、基本機能に大きな問題があるとは考えられない。

制御因子間の交互作用が大きい場合、図11、12の要因効果図の形状に山谷ができるが、極端な山谷は無い。

実験データを詳細に検討してみると、誤差因子による出力の変化が非常に小さく、また実験の一部で誤差因子の傾向が逆転していた。

SN比ηの計算式は

\[\eta = 10 \log \left(\frac{(S_{N-0} \cdot V_{N})}{V_{N}} \right) \]

である。また、SN比の式中において

\[V_{N} = (S_{N-0} + S_{0})/(f_{N-0} + f_{0}) \]

である。

\[V_{N} \] の中生は偶然誤差の分散 \(V_{N} \) と誤差因子の分散 \(V_{N-0} \) である。

試作条件、最適条件で \(V_{N} \) と \(V_{N} \) を比較すると表7のようにになり、\(V_{N} \) の大きさが \(V_{N} \) に対し非常に小さかった。

したがって、SN比の計算式から分かるように \(V_{N} \) のわずかな変動によってもSN比が大きく変化することになる。

誤差因子の効果が大きければ偶然誤差の影響が小さくなるが、今回の実験では誤差因子の分散 \(V_{N-0} \) が誤差分散 \(V_{N} \) に対し圧倒的に小さい。このため、SN比が偶然誤差に対し大きく影響を受けていていることになる。以上の考察から、実験の再現性が良くなかった理由は、誤差因子の効果が小さすぎたことに原因があると考える。

結果的に誤差因子の選択に問題があったことになり、どのような誤差因子を選択するか、今後の検討課題である。

もう一つ考えられる原因として、試作条件と最適条件の水準の取り方の問題がある。図11のSN比の要因効果図から、SN比への効果が大きい制御因子は

表5 SN比の再現性

<table>
<thead>
<tr>
<th>項目</th>
<th>推定</th>
<th>実験</th>
</tr>
</thead>
<tbody>
<tr>
<td>最適条件</td>
<td>30.92</td>
<td>32.49</td>
</tr>
<tr>
<td>試作条件</td>
<td>28.83</td>
<td>29.51</td>
</tr>
<tr>
<td>利得</td>
<td>-0.44</td>
<td>-1.45</td>
</tr>
</tbody>
</table>

表6 感度の比較

<table>
<thead>
<tr>
<th>項目</th>
<th>推定</th>
<th>実験</th>
</tr>
</thead>
<tbody>
<tr>
<td>最適条件</td>
<td>16.50</td>
<td>12.58</td>
</tr>
<tr>
<td>試作条件</td>
<td>10.77</td>
<td>12.68</td>
</tr>
<tr>
<td>利得</td>
<td>5.73</td>
<td>0.90</td>
</tr>
</tbody>
</table>

表7 分散の比較

<table>
<thead>
<tr>
<th></th>
<th>(V_{0})</th>
<th>(V_{N})</th>
<th>(V_{N-0})</th>
<th>(V_{N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>試作条件</td>
<td>1674.8</td>
<td>0.1771</td>
<td>0.0003</td>
<td>0.1838</td>
</tr>
<tr>
<td>最適条件</td>
<td>2071.7</td>
<td>0.3049</td>
<td>0.0001</td>
<td>0.3164</td>
</tr>
</tbody>
</table>
C, D, E, H である。確認実験ではこのうち D, H が同一水準、C は効果に殆ど差がない水準であり、実質は制御因子 E の効果のみの比較実験となっている。
このことから、実験の再現性が悪くなった理由と考えられる。

12. 従来の評価特性での比較
実験の再現性は悪かったが、開発の目的である吸引力の向上は達成ができた。
従来の評価特性である、ストローカー吸引力特性による比較を図 13 に示す。
試作条件に対し最適条件ではストローカー 1mm で吸引力が 24%向上した。

13. まとめ
(1) 実験の目銭である吸引力の向上に関しては、試作時に対し吸引力が 24%向上し大きな成果を得ることができた。
また達成した吸引力は従来品並を確保し、ソレノイドバルブとしても従来品と同等の性能を達成することができた。
(2) 加えて、開発期間も品質工学を適用せずに従来の手法で試行錯誤を続けていた場合に比較し約 2 分の 1 に短縮することができた。
(3) 実験的には誤差因子は役割を果たしていなかったが、このことは今回取り上げた誤差因子の影響が非常に小さいことを示しており、コイルの向きが性能に影響しないことを実証することになった。
(4) 今後の課題として、ソレノイドの誤差因子として何が適当であるかを検討していきたい。

14. おわりに
今回の実験では実験の再現性に若干問題があったものの、当初の目銭である吸引力の向上を短期間で実現することができた。
また、制御因子、誤差因子に対し重要な知見を得ることができた。
今後も品質工学を活用し、よりよい製品を市場に送りだしていきたいと考えている。